Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
SLAS Discov ; 26(8): 974-983, 2021 09.
Article in English | MEDLINE | ID: covidwho-1277904

ABSTRACT

Affinity selection mass spectrometry (ASMS) has emerged as a powerful high-throughput screening tool used in drug discovery to identify novel ligands against therapeutic targets. This report describes the first high-throughput screen using a novel self-assembled monolayer desorption ionization (SAMDI)-ASMS methodology to reveal ligands for the human rhinovirus 3C (HRV3C) protease. The approach combines self-assembled monolayers of alkanethiolates on gold with matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry (MS), a technique termed SAMDI-ASMS. The primary screen of more than 100,000 compounds in pools of 8 compounds per well was completed in less than 8 h, and informs on the binding potential and selectivity of each compound. Initial hits were confirmed in follow-up SAMDI-ASMS experiments in single-concentration and dose-response curves. The ligands identified by SAMDI-ASMS were further validated using differential scanning fluorimetry (DSF) and in functional protease assays against HRV3C and the related SARS-CoV-2 3CLpro enzyme. SAMDI-ASMS offers key benefits for drug discovery over traditional ASMS approaches, including the high-throughput workflow and readout, minimizing compound misbehavior by using smaller compound pools, and up to a 50-fold reduction in reagent consumption. The flexibility of this novel technology opens avenues for high-throughput ASMS assays of any target, thereby accelerating drug discovery for diverse diseases.


Subject(s)
COVID-19 Drug Treatment , High-Throughput Screening Assays , Rhinovirus/drug effects , Small Molecule Libraries/chemistry , 3C Viral Proteases/chemistry , COVID-19/virology , Drug Discovery , Humans , Ligands , Mass Spectrometry , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Small Molecule Libraries/isolation & purification , Small Molecule Libraries/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL